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Abstract

A sawmill cuts logs into lumber and sells this lumber to
secondary remanufacturers. The price a sawmiller can charge
for lumber is dependent on its grade. In some species the
cost of lumber will double in moving from one grade to
the next higher grade. While the grade of a board largely
depends on the distribution of defects on its surface, the
grade of a board can usualy be increased by appropriate
edging and trimming.  Optimal edging and trimming can
markedly increase sawmill profits. In this paper research
aimed at creating a computer vision system to power such
an optimal edging and trimming system will be described.
This system is designed to analyze images of rough hardwood
lumber in a species independent manner.  Results are
presented that demonstrate the capabilities of the current
system.

1. Introduction

Sawmills saw logs into boards. They sell these boards to
secondary remanufactures who use this raw material to
manufacture goods such as furniture, cabinets, etc. The
price a sawmiller can charge for a volume of lumber depends
on its grade. In some species the price of a given volume
of material can double in going from one grade to the next
higher grade. While the grade of a board does to a large
extent depend on the distribution of defects on its surface,
appropriate edging and trimming can increase the grade of
aboard, Hence optima edging and trimming provide a
mechanism for a sawmiller to increase his profits.

The research reported in this paper is aimed at developing
a computer vision system that can be used in an automatic
edger and trimmer for hardwood lumber, an edger and
trimmer that will optimize the value of the hardwood boards
processed. The purpose of this computer vision system is
to locate and identify defects that affect the grade of the
materiad.  The vision system must be able to detect these
defects in a variety of different species. It must be able
to cope with the intra as well as the inter species variations
in the way these defects manifest themselves.

While some [1],[2],[3] have reported progress on developing
computer vision systems for surfaced lumber, little if any
work has been done on the rough lumber problem. The
reason for that is that rough lumber processing is arguably
more complex than the surfaced lumber problem. One of
the primary difficulties is the rough board surface itself.
Surface roughness is attributed to both the fibrous nature
of wood and vibrations of saw blades. The structures
comprising rough surface can and do cause shadows that
must be dealt with by the computer vision system. Other
difficulties include color changes that occur during the drying
process, discolorations that occur due to exposure to
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ultra-violet light, and finally, chemical secretions that occur
after boards are cut from a log.

The system rﬁ)orted consists of three modules: a low-level
module, amid-level module, and a high-level module. The
low-level module is a segmentation module that segments
an input board image using a histogram based thresholding
method.  The mid-level module eliminates small noise
regions, merges “similar” adjacent reﬁion_s, and computes
region properties of merged regions. The high-level module
identifies the defect present in each of the regions passed
to it using a rule-based approach.

2. The Low-Level Module

This module performs two functions.  First it separates
Bixels of background from pixels of board. This is facilitated

y the fact one can control the color of the background.
Details of this step are given in [1]. Second, it separates
pixels of clear wood from pixels that might be of a defect.
To do that, a histogram based thresholding is used. While
many thresholding techniques have been reported in the
literature [4], most of these deal with bilevel thresholding
using a single threshold. Unfortunateldy, gray level histograms
of rough lumber are often multimodal. Using only asingle
threshold destroys the information about the multimodal
characteristics of the image data.  Hence the thresholding
method used involves setting multiple thresholds based on
both valley points and inflexion points of the gray level
histogram. Inflexion points are examined as candidates for
thresholds because small defects frequently embed themselves
in the clearwood peak without forming a peak of their own.

The steps used to perform this segmentation are given below.

St%%.Co ruct a gray level histogram using.only black
and white |J?1 olrjma%&agerived Prlom%e cé10r %ixe,gotJ z%ﬁe
board. Let Hist(k) denote the value of the histogram at
gray level k.

Stgﬁ 2. Choose conspicuous valley points in the histogram
as thresholds, t,t,,..., and t.

Step 3. To find possible smaller defects that might embed
emselves m the clear wood peak, let t,be the minimum

ray level and t. be the maximum gray level in the
istogram. Find the interval [t,t.] within which the largest
peak exists. This peak will always be the clear wood peak.
Stg%)I 4. Perforép FG ssian smoothing [5] to the histogram
m the interval |t,t,,]. (The standard deviation of the
Gaussian filter used Is equd to 3.) Thisis needed to avoid

spurious inflexion points in the histogram.

Step 5. Find the subinterval [t.t..], of “,,t_,ﬂ] such that
Hist(k) > CMIN for al ke [t,t.,]." CMIN is'equal to 3
percent of the largest value of Hist(.). The reason for
choosing the subinterval is because when Gaussian smoothing
is applied to intervals where the values of Hist(.) are small
typically it gives many spurious inflexion points.



Step 6. If t> t+MIND select tas a threshold. MIND
is a parameter which controls the minimum distance between
consecutive thresholds. . o

Step 7. For each p in the subinterval [t,t.,] determine if
() the first derivative of the smoothed histogram at p is
positive and the second derivative of the smoothed histogram
changes from negative to positive or if (b) the first derivative
of the smoothed histogram at p is negative and the second
derivative of the smoothed hist%%ram changes from positive
to negative.  If either of the above is true, p is selected
as athreshold.

With regard to Step 7, it should be noted that even with
the Gaussian smoothing the second derivativeis frec%uerptly
noisy. To prevent this noise from adversely affecting
inflexion point determination, an interval about p is used
to determine the sign change of the second derivative. A
voting scheme is applied to each side of the interval to
determine the sign of the second derivative. Experimentation
has shown this to be an effective way to reduce the affect
of noise on inflexion point determination.

Once the thresholds have been found, regions formed by
each pair of thresholds are marked. All pixels having gray
Iﬁvel value between two consecutive thresholds are marked
the same.

3. TheMid-Level Module

This module performs several functions. The first function
it performs is connected component labeling [5]. A
connected regions are found and each such region is given
aunique |abel to differentiate it from the rest of the connected
regions.

Usually, the initial segmentation will produce many small
meaningless regions some of which are the result of shadows
being cast by the structures on the rough board surface.
A second task performed by the mid-level module is to
remove these small meaningless regions from any further
consideration. This small region elimination is done similarly
as that discussed in [6].

After all the small regions have been eliminated, the mid-level
module performs further merging. This mer?i ng operation
is based on a statistical T-test for equality of average gray
levels between adjacent regions R,and R,. The underlying
assumptions associated with the use of the T-test is that
the gray levels of the pixelsin both R, and R,are independent,
that they have identically distributed normal distributions,
and that the variances of the distributions are unknown but
equal. The steps associated with using the T-test are given
in detail in [7]. Similar statistical tests have been used by
other investigators, for example, [8].

After the region merging operation is complete, a vector of
features is extracted from each of the resulting regions.
These features are : area, average gray level, center of mass,
minimum bounding rectangle, elongatedness, perimeter,
compactness, and _board boundary (a flag indicating
whether a region is touching board boundary or not).

4. The High-Level Module

This high-level modul€'s function is to perform the scene
analysis task, i.e., to identify the defect present in each of
regions passed to it from mid-level module. Currently, this

module has been taught to recognize four of the most
common defect _ques. These areknots, holes, wane, and
i

splits/checks. s module uses a three step process to
perform the scene analysis task.

First, based on the region properties computed by the
mid-level module, each region is assigned a vector of initial
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confidences. Each component of this vector is the confidence
that the region is of a particular defect type. The evaluation
of these confidences is based on fuzzy set theory [9].
(Details of this confidence calculation are shown later.)

Once al the regions have had their initial confidence vectors
computed, defect detection procedures are applied. (All the
regions are initially “unlabeled”.) These defect detection
procedures are very specialized. Each defect detection
procedure is designed to detect a particular defect. The
basic strategy used in each defect detection procedure isto
first consider regions that seemingly represent “exemplary”
examples of the defect the procedure was designed to
recognize. Specialized defect detection methods are applied
to these regions. A region is considered to be an exemplary
example of a particular defect if this region’'s initial con-
fidence vector has a high value for the component that
corresponds to this defect type. After all of the exemplary
regions have been processed, regions representing more
“ambiguous’ examples of that defect type are considered
by the defect detection procedure. The labeling of these
regions is based on defect detection methods that gauge
contextual dependency and similarity of properties. ~ (One
procedure for detecting splits/checks is described later in
detail. Other defect detection procedures are constructed in
a similar fashion; see [7] for details.)

The recognition process is ordered.  The procedure for
identifying split/check is ea(\:]oplied fret. The procedure for
identifying holes is applied second.  The procedure for
identifying wane is applied next. =~ The procedure for
identifying knots is applied last.

Even after al the defect detection procedures have been
applied, there may still exist unlabeled regions. Such regions
are labeled using spatial contextual dependency. First, every
unlabeled region is labeled as clear wood. ~ Next, if any
unlabeled region is completely enclosed by regions labeled
as defects, then it is given the same label as the region
with which it shares the longest common boundary.

The final step of the recognition process is a labeling
verification step. This step I's necessitated by the fact that
even after region merging, each region does not usually
correspond to a defect; typically adefect is fragmented into
several regions.  In this step, groups of connected regions
that have the same label are combined to form a single
new region that is added to list of existing regions. As
each of these regions is formed, measures are extracted.
These measures are used to verify the common label of
small regions comprising the new region.

Initial Confidence Calculation

To use fuzzy set theory to assign initial confidences requires
that a high-level qualitative description of each defect type
exist. Each defect the is described using some primitive
terms. For each of these terms, a membership function is
defined. For example, splits/checks are characterized as

“long” and “dark” defects. The fuzzy membership function
for “long” is defined by

p’lon,(x) = 0; x < tp
h—-x
= y L SXSH,
h—h
=1, x>t

where x is the area of the current region, and where t, t,
are parameters determined empirically.

Based on these membership functions the confidence vector



for each region can be computed using intersection and
union operations on fuzzy sets. For example, let cf(R,spchk)
be the confidence that region R is a split/check. Then,
cf(R,spchk) is calculated using

Cf(R'SpChk) = mln (Mong(x)7Udark(y))
where x is the elongatedness of region R and y is the
average gray level of region R.

Split/Check Detection Procedure

Exemplary regions, ones having high split/check confidence
(>0.5), are considered in the order of the average gray level,
i.e., the darkest region is considered fret. Let R be such
an unlabeled region. If R does not have any adjacent
region that has been previously labeled as a split/check and
if R is much darker than its adjacent regions, then R is
labeled as a split/check.

For regions that are not exemplary, a rule is used to
determine whether any of these regions should be labeled
as a split/check. Let R be such an unlabeled region. If
R has some degree of confidence of being a split/check
(>0.1) and if there is an aoyacent region, R’, that has been
already assigned as a split/check and if the elongatedness
of R merged with R’ is greater than that of R, then R is
labeled as a split/check. This rule detects regions that have
low confidence of being a split/check but are aligned with
aregion already recognized as being a split/check.

5. Experimental Results

Images used in this experiments were obtained by digitizin

a number of rough lumber boards for several species o
wood: cherry, oak, poplar, and maple. The digitized images
were all created using the same camera setti gg and lighting
condition. The images were shading corrected to minimize
spatial nonuniformities in shading due to uneven illumination
and nonlinearities in camera [10]. The shading corrected
images that are input to the system have three 8-bit 480x512
color channels. The spatial resolution is approximately 64
points per inch.  This hi?(h resolution is required in order
to detect small splits/checks.

The current system has been implemented in FORTRAN
77 on a VAX 11/785 minicomputer system. Test of our
system has been performed using approximately 30 boards
from four different species. Two processing examples are
shown to demonstrate capabilities of the current system.
Each figure shown has two parts: (zé) original black/white
image of a board and (b) results of defect recognition. (In
(b) of each figure, each defect label is given a unique gray
level with itsname. White area is clear wood.)

Fig. 1 for a oak board shows a small knot and a large
knot containing a split/check which have been correctly
identified, in spite of much “noise” in the image due to
the wood grain and some dirt. Fig. 2 shows a cherry board
which contains clear wood, wane, and a large hole. Notice
that a wane and a hole are correctly identified, athough
there are some regions incorrectly labeled as knots. Those
labeling errors can be corrected by a more powerful top-down
defect verification scheme that is planned in the future.

6. Conclusions

A computer vision system for locating and identifying defects
on rough hardwood lumber m a species independent manner
has been described. While it has limited recognition
capabilities, only being able to identify four defect types,
it does suggest that species independent methods can be
found for accomplishing the required tasks. Obviousl, much
further research is required. The future research should be
directed toward expanding the list of defects that can be
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identified as well as improving accuracy of the system.
Clearly, the top-down processing in the current system needs
to be augmented to help improve recognition accuracy.
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Fig. 1. A rou(g% oak board. (a) Origina irr1(a2;e. (b) Results
of defect recognition.
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a) b
Fig.2. A rougﬁ'l cherry board. (a) original ir%a)ge. (b) Results
of defect recognition.
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